INVESTMENT ANALYSIS

Return and risk of a risky portfolio	$\begin{gathered} E(r)_{P}=\sum_{j=1}^{n} E(r)_{j} \cdot w_{j} \\ E(r)_{P}=\sum_{i=1}^{m} E(r)_{i P} \cdot p_{i} \\ \operatorname{Cov}_{x y}=\sum_{i=1}^{m}\left[E(r)_{i x}-E(r)_{x}\right] \cdot\left[E(r)_{i y}-E(r)_{y}\right] \cdot p_{i} \\ \operatorname{Cov}_{x y}=\sigma_{x} \cdot \sigma_{y} \cdot \rho_{x y} \\ \rho_{x y}=\frac{\operatorname{Cov} v_{x y}}{\sigma_{x} \cdot \sigma_{y}} \\ \operatorname{Var}(r)_{P}=\sigma^{2}(r)_{P}=w_{x}^{2} \sigma_{x}^{2}+2 w_{x} w_{y} \operatorname{Cov} v_{x y}+w_{y}^{2} \sigma_{y}^{2} \\ \operatorname{Var}(r)_{P}=\sigma^{2}(r)_{P}=\sum_{i=1}^{m}\left[E(r)_{i P}-E(r)_{P}\right]^{2} \cdot p_{i} \\ \sigma(r)_{P}=\sqrt{\operatorname{Var}(r)_{P}} \end{gathered}$	$\mathrm{E}(\mathrm{r})_{\mathrm{p}}$ - expected return of a protfolio w_{j} - weight of investment j in a portfolio (n - number of investments in a portfolio) $\mathrm{E}(\mathrm{r})_{\mathrm{ip}}$ - expected return of a portfolio in scenario i $\mathrm{Cov}_{\mathrm{xy}}$ - covariance between returns of two investments x and y $\rho_{x y}$ - correlation coefficient between returns of two investments x and y $\operatorname{Var}(\mathrm{r})_{\mathrm{P}}$ - variance of a portfolio's return $\sigma(r)_{P}$ - standard deviation of a portfolio's return
Return and risk of a total portfolio	$\begin{gathered} E(r)_{T P}=E(r)_{P} \cdot w_{P}+r_{F} \cdot w_{F} \\ E(r)_{T P}=r_{F}+w_{P} \cdot\left[E(r)_{P}-r_{F}\right] \\ \sigma(r)_{T P}=w_{P} \cdot \sigma(r)_{P} \end{gathered}$	$\mathrm{E}(\mathrm{r})_{\mathrm{TP}}$ - expected return of a total portfolio r_{F} - return of a risk-free asset w_{P} - weight of a risky portfolio in a total portfolio W_{F} - weight of a risk-free asset in a total portfolio $\sigma(\mathrm{r})_{\mathrm{TP}}$ - standard deviation of a total portfolio's return
Coupon bond	$B_{0}=I_{t} \cdot I V_{k_{b}}^{t}+N \cdot I I_{k_{b}}^{t} \quad I_{t}=i \cdot N$ G.F. $\quad k_{b} \approx \frac{I_{t}+\frac{N-B_{0}}{t}}{0,6 \cdot B_{0}+0,4 \cdot N}$ M.I.S. exact calculation of k_{b} (iteration)	B_{0} - value / price of a bond k_{b} - required rate of return on a bond(yield to maturity) N - nominal value t-maturity
Zero-coupon bond	$B_{0}=N \cdot I I_{k_{b}}^{t} \quad k_{b}=\sqrt[t]{\frac{N}{B_{0}}}-1$	It - coupon (interest)
Annuity bond	$B_{0}=A_{t} \cdot I V_{k_{b}}^{t} \quad A_{t}=N \cdot V_{i}^{t} \quad I V_{k_{b}}^{t}=\frac{B_{0}}{A_{t}}$	
Yield to call (coupon bond)	$\begin{aligned} & B_{0}=I_{t} \cdot I V_{k_{c}}^{t_{c}}+B_{c} \cdot I I_{k_{c}}^{t_{c}} \quad B_{c}=N \cdot\left(1+p_{c}\right) \\ & \text { G.F. } \quad k_{c} \approx \frac{I_{t}+\frac{B_{c}-B_{0}}{t_{c}}}{0,6 \cdot B_{0}+0,4 \cdot B_{c}} \\ & \text { I.R.M. exact calculation of } k_{c} \text { (iteration) } \end{aligned}$	B_{c} - call price k_{c} - yield to call t_{c} - years when bond becomes callable p_{c} - call premium (\%)
Duration	$\begin{gathered} \tau=\frac{\sum_{t=1}^{T} \frac{t \cdot V_{t}}{\left(1+k_{b}\right)^{t}}}{B_{0}} \\ \tau=\frac{\frac{1 \cdot I_{t}}{\left(1+k_{b}\right)^{1}}+\frac{2 \cdot I_{t}}{\left(1+k_{b}\right)^{2}}+\cdots+\frac{T \cdot\left(I_{t}+N\right)}{\left(1+k_{b}\right)^{T}}}{B_{0}} \\ \tau^{m}=\frac{\tau}{1+k_{b}} \\ \% \Delta B_{0}=-\tau \cdot \frac{\Delta k_{b}}{1+k_{b}}=-\tau^{m} \cdot \Delta k_{b} \\ \tau_{P}=\sum_{j=1}^{n} \tau_{j} \cdot w_{j} \end{gathered}$	τ - duration of a bond V_{t} - cash flows of a bond τ^{m} - modified duration of a bond $\% \Delta B_{0}$ - percentage price change of a bond $\Delta \mathrm{k}_{\mathrm{b}}$ - yield to maturity change (in percentage points) τ_{P}-duration of a portfolio (that is compound of bonds)
Preffered shares (constant dividends)	$\begin{aligned} P_{0} & =\frac{D_{t}}{k_{s}} \\ k_{s} & =\frac{D_{t}}{P_{0}} \end{aligned}$	P_{0} - share price D_{t} - preffered dividends per share k_{s} - required rate of return

Common shares (constant growth of dividends)	$\begin{gathered} \text { G.M. } \quad P_{0}=\frac{D_{0} \cdot(1+g)}{k_{s}-g}=\frac{D_{1}}{k_{s}-g} \\ k_{s}=\frac{D_{0} \cdot(1+g)}{P_{0}}+g=\frac{D_{1}}{P_{0}}+g \\ P_{t}=\frac{D_{t} \cdot(1+g)}{k_{s}-g} \quad P_{t}=P_{0} \cdot(1+g)^{t} \\ D_{t}=D_{0} \cdot(1+g)^{t} \quad E_{t}=E_{0} \cdot(1+g)^{t} \\ D_{t}=E_{t} \cdot d \quad d=1-z \\ P / E=\frac{P_{t}}{E_{t}}=\frac{d \cdot(1+g)}{k_{s}-g} \end{gathered}$	P_{0} - share price D_{0} - payed-out dividends per share D_{1} - expected dividends per share k_{s} - required rate of return g - growth rate of dividends (earnings, share price) P_{t} - share price in period t D_{t} - expected dividends per share in period t E_{t} - expected earnings per share in period t d - payout dividend ratio
Common shares (variable dividends, supernormal growth, Hmodel)	$\begin{gathered} P_{0}=\sum_{t=1}^{\infty} \frac{D_{t}}{\left(1+k_{s}\right)^{t}} \\ P_{0}=\sum_{t=1}^{T} \frac{D_{t}}{\left(1+k_{s}\right)^{t}}+\frac{P_{T}}{\left(1+k_{s}\right)^{T}} \\ P_{0}=\sum_{t=1}^{T} \frac{D_{0} \cdot\left(1+g_{s}\right)^{t}}{\left(1+k_{s}\right)^{t}}+\frac{D_{T} \cdot\left(1+g_{n}\right)}{\left(k_{s}-g_{n}\right) \cdot\left(1+k_{s}\right)^{T}} \\ P_{0}=\frac{D_{0} \cdot\left(1+g_{n}\right)}{k_{s}-g_{n}}+\frac{D_{0} \cdot H \cdot\left(g_{s}-g_{n}\right)}{k_{s}-g_{n}} \quad H=\frac{T}{2} \end{gathered}$	z - retained earnings ratio P/E - price-earnings ratio g_{s} - supernormal growth rate of dividends g_{n}-normal growth rate of dividends T - period of linear decrease of growth rate VP_{0} - value of the company FCFF_{0} - free cash flow to the firm k - weighted average cost of capital
Common shares (free cash flow)	$\begin{gathered} V P_{0}=\frac{F C F F_{0} \cdot(1+g)}{k-g} \\ P_{0}=\frac{\text { Value of common equity }_{\cdot 0}}{N_{s}}=\frac{V P_{0}-\text { Liabilities }_{0}}{N_{s}} \\ P_{0}=\frac{F C F E p s_{0} \cdot(1+g)}{k_{s}-g} \end{gathered}$	N_{s} - number of the common shares FCFEps $_{0}$ - free cash flow to the equity (per share)
Market multipliers	$\begin{gathered} P / E=\frac{P P S}{E P S} \quad P / D=\frac{P P S}{D P S} \\ P / S=\frac{P P S}{S P S} \quad P / B=\frac{P P S}{B P S} \\ E P S=\frac{\text { Net income }}{N_{s}} \quad D P S=\frac{\text { Dividends }}{N_{s}} \\ S P S=\frac{\text { Sales }}{N_{s}} \quad B P S=\frac{\text { Book value of equity }}{N_{s}} \\ N_{s}=\text { number of issued shares } \\ \quad-\text { number of treasury shares } \\ P P S_{j}=(P / E)_{s} \cdot E P S_{j} \quad P P S_{j}=(P / D)_{s} \cdot D P S_{j} \\ P P S_{j}=(P / S)_{s} \cdot S P S_{j} \quad P P S_{j}=(P / B)_{s} \cdot B P S_{j} \end{gathered}$	P/E - price-earnings ratio P/D - price-dividends ratio P/S - price-sales ratio P / B - price to book value of equity ratio PPS - market price of share EPS - earnings per share DPS - dividends per share SPS - sales (revenue) per share BPS - book value of equity per share N_{s} - number of outstanding shares PPS ${ }_{j}$-price of j company $(\mathrm{P} / \mathrm{X})_{s}$ - standard price to selected variable ratio

CAPM	$\begin{gathered} k_{S_{i}}=k_{F}+\beta_{i} \cdot\left(k_{M}-k_{F}\right) \\ \beta_{i}=\frac{\operatorname{Cov}_{i M}}{\sigma_{M}^{2}} \\ \sigma_{P}=\sqrt{\beta_{P}^{2} \sigma_{M}^{2}+\sigma_{\varepsilon_{P}}^{2}} \approx \beta_{P} \sigma_{M} \end{gathered}$	k_{S} - required rate of return k_{F} - nominal risk-free interest rate β - systematic risk k_{M}-return of market index Covim - covariance between a specific security's return and market portfolio return $\sigma_{\mathrm{M}}-$ standard deviation of a market portfolio return $\sigma_{\mathrm{P}}-$ standard deviation of a well diversified portfolio's return $\sigma_{\varepsilon \mathrm{P}}$ - standard deviation of a residual (specific risk) of a well diversified portfolio
Margin account (long position)	$\begin{gathered} \text { i.m. } \%=\frac{\text { Purchase amount }- \text { Loan }}{\text { Purchase amount }}==\frac{\text { Initial margin }}{\text { Purchase amount }} \\ \text { a. } m . \%=\frac{\text { Actual market value of a portolio }- \text { Loan }}{\text { Actual market value of a portolio }} \\ \text { c. } m . \%=\frac{\text { Minimum market value of a portolio }- \text { Loan }}{\text { Minimum market value of a portolio }}= \\ =\frac{\text { Maintainance margin }}{\text { Maintainance margin }+ \text { Loan }} \\ \text { r.m. } \%=\frac{P_{t+1}-P_{t}+D_{t}-k_{d} \cdot(1-\text { i.m. } \%) \cdot P_{t}}{\text { i.m. } \% \cdot P_{t}} \end{gathered}$	i.m. \% - initial margin requirement (\%) a.m. \% - actual margin in investors account (\%) c.m. \% - maintainance margin (\%) r.m. \% - investor's return on investment (short sale) over the margin account (\%) P_{t} - share price in period t D_{t} - dividends per share k_{d} - interest rate on margin loan / deposit (\%)
Margin account (short sale)	$\begin{gathered} \text { i.m. } \%=\frac{\text { Initial margin }}{\text { Short sale value }} \\ \text { a.m. } \%=\frac{\begin{array}{c} \text { In.margin }+ \text { Short sale value }- \text { Market value } \\ \text { of securities } \end{array}}{\text { Market value of securities }} \\ \text { c. } m . \%=\frac{\text { In.margin }+ \text { Short sale value }- \text { Max.market }}{\text { value of securities }} \\ \text { Max.market value of securities } \\ \text { r.m. } \%=\frac{P_{t}-P_{t+1}-D_{t}+k_{d} \cdot i . m . \% \cdot P_{t}}{i . m . ~} \% \cdot P_{t} \end{gathered}$	
Income, savings, investment and consumption	$\begin{gathered} Y_{0}=C_{0}+S_{0}+I_{0} \\ k_{S}=k_{F}+k_{R} \\ C_{0}=Y_{0}+\frac{S_{1}}{1+k_{F}} \\ C_{1}=Y_{1}+S_{0}\left(1+k_{F}\right) \\ \max C_{0}=Y_{0}-I_{0}+\frac{Y_{1}}{1+k_{F}}+\frac{I_{1}}{1+k_{S}} \end{gathered}$	Y_{t} - income in period t C_{t} - consuming in period t S_{t} - savings in period t I_{t} - investment in period t k_{F} - risk-free interest rate ks - risk adjusted discount rate

