INVESTMENT ANALYSIS

(March 2015)

Total holding period return (total profitability)	$R_{t} = \frac{D_{t} + (P_{t} - P_{0})}{P_{0}} = \frac{D_{t} + P_{t}}{P_{0}} - 1$ $R_{t} = \frac{I_{t} + (B_{t} - B_{0})}{B_{0}} = \frac{I_{t} + B_{t}}{B_{0}} - 1$ $R_{t} = y_{d} + \%\Delta P$ $R_{t} = y_{b} + \%\Delta B$ $R_{0-n} = (1 + R_{1}) \cdot (1 + R_{2}) \cdot \dots \cdot (1 + R_{n}) - 1$ $R_{0-n}^{annual} = \sqrt[n]{(1 + R_{1}) \cdot (1 + R_{2}) \cdot \dots \cdot (1 + R_{n})} - 1$ $R_{t}^{FX} = \frac{(D_{t} + P_{t}) \cdot (1 + a)}{P_{0}} - 1$ $R_{t}^{portfolio} = \sum_{j=1}^{n} w_{j} \cdot R_{t_{j}}$	$\begin{split} R_t &= \text{total holding period return} \\ D_t \ I_t &= \text{current income} \\ P_t \ B_t &= \text{price of investment at the end of the period} \\ P_0 \ B_0 &= \text{price of investment at the beginning of the period} \\ y_d \ y_b &= \text{current yield (\%)} \\ \% \Delta P \ \% \Delta B &= \text{capital gain / loss (\%)} \\ R_{0-n} &= \text{total profitability (holding period more than a year)} \\ R^{annual}_{0-n} &= \text{average annual holding period return (average annual profitability)} \\ R^{FX}_t &= \text{total profitability (return) of investments denominated in foreign currency} \\ a &= \text{appreciation of currency (\%)} \\ R_t^{port} &= \text{total portfolio return} \end{split}$
Real / nominal rate of return	$r = \frac{1+n}{1+i} - 1$ $r \approx n-i$	r – real rate of return n – nominal rate of return i – inflation rate
Measures of portfolio return	Increase $in the value$ $of a portfolio$ $Value of a portfolio at the value of a portfolio at the value of a portfolio at the value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio Value of a portfolio$	he beginning of the period dends, — and custody sets etc. — costs e beginning of the period dends, — and custody costs e beginning of the period dends, — and custody costs tec. after taxes — and custody costs the beginning of the period
Return and risk of an investment	$E(r)_{j} = \sum_{i=1}^{m} E(r)_{ij} \cdot p_{i}$ $Var(r)_{j} = \sigma^{2}(r)_{j} = \sum_{i=1}^{m} \left[E(r)_{ij} - E(r)_{j} \right]^{2} \cdot p_{i}$ $\sigma(r)_{j} = \sqrt{Var(r)_{j}}$ $V(r)_{j} = \frac{\sigma(r)_{j}}{E(r)_{j}}$	$\begin{split} E(r)_{i} - & \text{ expected return of investment } j \\ & Var(r)_{j} - variance \text{ of investment } j \\ & \sigma(r)_{j} - \text{ standard deviation of investment } j \\ & V(r)_{j} - \text{ coefficient of variation of investment } j \\ & p_{i} - \text{ probability of scenario } i (m - \text{ number of possible scenarios}) \\ & E(r)_{ij} - \text{ expected return of investment } j \text{ in scenario } i \end{split}$

Return and risk of a risky portfolio	$E(r)_{P} = \sum_{i=1}^{n} E(r)_{j} \cdot w_{j}$	$E(r)_P$ – expected return of a protfolio w_i – weight of investment j in a portfolio (n – number of investments in a partfolio)
portiono	<i>y</i> -1 <i>m</i>	investments in a portfolio) E(r) _{IP} – expected return of a portfolio in scenario i
	$E(r)_P = \sum_{i=1}^m E(r)_{iP} \cdot p_i$	Cov _{xy} – covariance between returns of two investments x and y
	$Cov_{xy} = \sum_{i=1}^{m} [E(r)_{ix} - E(r)_{x}] \cdot [E(r)_{iy} - E(r)_{y}] \cdot p_{i}$	ρ_{xy} – correlation coefficient between returns of two investments \boldsymbol{x} and \boldsymbol{y}
	<i>t</i> −1	Var(r) _P – variance of a portfolio's return
	$Cov_{xy} = \sigma_x \cdot \sigma_y \cdot \rho_{xy}$	$\sigma(r)_P$ – standard deviation of a portfolio's return
	$\rho_{xy} = \frac{\textit{Cov}_{xy}}{\sigma_x \cdot \sigma_y}$	
	$Var(r)_{P} = \sigma^{2}(r)_{P} = w_{x}^{2}\sigma_{x}^{2} + 2w_{x}w_{y}Cov_{xy} + w_{y}^{2}\sigma_{y}^{2}$	
	$Var(r)_{P} = \sigma^{2}(r)_{P} = \sum_{i=1}^{m} [E(r)_{iP} - E(r)_{P}]^{2} \cdot p_{i}$	
	$\sigma(r)_P = \sqrt{Var(r)_P}$	
Return and	$E(r)_{TP} = E(r)_P \cdot w_P + r_F \cdot w_F$	$E(r)_{TP}$ – expected return of a total portfolio
risk of a total portfolio	$E(r)_{TP} = r_F + w_P \cdot [E(r)_P - r_F]$	r _F - return of a risk-free asset
portiono	$\sigma(r)_{TP} = w_P \cdot \sigma(r)_P$	W _P – weight of a risky portfolio in a total portfolio
		W_F – weight of a risk-free asset in a total portfolio $\sigma(r)_{TP}$ – standard deviation of a total portfolio's return
Coupon bond	$B_0 = I_t \cdot IV_{k_h}^t + N \cdot II_{k_h}^t \qquad I_t = i \cdot N$	B ₀ – value / price of a bond
goupon bonu		k_b – required rate of return on a bond(yield to maturity)
	G.F. $k_b \approx \frac{I_t + \frac{N - B_0}{t}}{0.6 \cdot B_0 + 0.4 \cdot N}$	N – nominal value
	$0.6 \cdot B_0 + 0.4 \cdot N$ M.I.S. exact calculation of k_b (iteration)	t – maturity
Zero-coupon	_	i – coupon / nominal interest rate
bond	$B_0 = N \cdot II_{k_b}^t \qquad k_b = \sqrt[t]{\frac{N}{B_0}} - 1$	I_t – coupon (interest) A_t – annuity
Annuity bond	$B_0 = A_t \cdot IV_{k_b}^t \qquad A_t = N \cdot V_i^t \qquad IV_{k_b}^t = \frac{B_0}{A_t}$	
Yield to call	$B_0 = I_t \cdot IV_{k_c}^{t_c} + B_c \cdot II_{k_c}^{t_c}$ $B_c = N \cdot (1 + p_c)$	B_c – call price
(coupon bond)	$I_c + \frac{B_c - B_0}{I_c}$	k _c – yield to call
	G.F. $k_c \approx \frac{I_t + \frac{B_c - B_0}{t_c}}{0.6 \cdot B_0 + 0.4 \cdot B_c}$	t_c – years when bond becomes callable p_c – call premium (%)
	I.R.M. exact calculation of k_c (iteration)	pt can premium (70)
Duration	$\sum_{t=1}^{T} \frac{t \cdot V_t}{\sqrt{1 + \left(1 + \frac{1}{2}\right)^2 + \left(1 + \frac{1}{2}\right)^2}}$	τ – duration of a bond
	$\tau = \frac{\sum_{t=1}^{T} \frac{t \cdot V_t}{(1+k_b)^t}}{B_0}$	Vt – cash flows of a bond
	$1 \cdot I_t$. $2 \cdot I_t$ $T \cdot (I_t + N)$	τ^m – modified duration of a bond $\%\Delta B_0$ – percentage price change of a bond
	$\tau = \frac{\frac{1 \cdot l_t}{(1 + k_b)^1} + \frac{2 \cdot l_t}{(1 + k_b)^2} + \dots + \frac{T \cdot (l_t + N)}{(1 + k_b)^T}}{B_0}$	Δk_b – yield to maturity change (in percentage points)
		τ_P –duration of a portfolio (that is compound of bonds)
	$\tau^m = \frac{\tau}{1 + k_b}$	
	$\%\Delta B_0 = -\tau \cdot \frac{\Delta k_b}{1 + k_b} = -\tau^m \cdot \Delta k_b$	
	$n \sum_{i=1}^{n}$	
	$ au_P = \sum_{j=1} au_j \cdot w_j$	
Preffered	$P_0 = \frac{D_t}{k_c}$	P ₀ – share price
shares (constant	3	D _t – preffered dividends per share
dividends)	$k_s = \frac{D_t}{P_o}$	k_s – required rate of return
	1 ()	1

		1
Common	G.M. $P_0 = \frac{D_0 \cdot (1+g)}{k_0 - a} = \frac{D_1}{k_0 - a}$	P ₀ – share price
shares	$G.M. \qquad P_0 = \frac{1}{k_s - g} = \frac{1}{k_s - g}$	D ₀ – payed-out dividends per share
(constant growth of	$k_s = \frac{D_0 \cdot (1+g)}{P_0} + g = \frac{D_1}{P_0} + g$	D ₁ – expected dividends per share
dividends)	$\kappa_s = \frac{1}{P_0} + g = \frac{1}{P_0} + g$	k_s – required rate of return
	$P_t = \frac{D_t \cdot (1+g)}{k_s - g} \qquad P_t = P_0 \cdot (1+g)^t$	g – growth rate of dividends (earnings, share price)
	$D_t = D_0 \cdot (1+g)^t$ $E_t = E_0 \cdot (1+g)^t$	P_t – share price in period t
	$D_t = E_t \cdot d \qquad d = 1 - z$	D_t – expected dividends per share in period t
		E_t – expected earnings per share in period t
	$P/E = \frac{P_t}{E_t} = \frac{d \cdot (1+g)}{k_s - g}$	d – payout dividend ratio
		z – retained earnings ratio
Common shares (variable	$P_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+k_s)^t}$	P/E – price-earnings ratio
dividends,	$\sum_{n=1}^{T} D_n P_n$	g _s – supernormal growth rate of dividends
supernormal growth, H-	$P_0 = \sum_{t=1}^{T} \frac{D_t}{(1+k_s)^t} + \frac{P_T}{(1+k_s)^T}$	g_n –normal growth rate of dividends
model)	$\frac{1}{t=1}$ (1 + Ng)	T – period of linear decrease of growth rate
	$P_0 = \sum_{t=0}^{T} \frac{D_0 \cdot (1+g_s)^t}{(1+k_s)^t} + \frac{D_T \cdot (1+g_n)}{(k_s - g_n) \cdot (1+k_s)^T}$	
	$r_0 - \sum_{t=1}^{\infty} \frac{1}{(1+k_s)^t} + \frac{1}{(k_s - g_n) \cdot (1+k_s)^T}$	VP ₀ – value of the company
	$D_0 \cdot (1+a_n) D_0 \cdot H \cdot (a_n-a_n)$	FCFF ₀ – free cash flow to the firm
	$P_0 = \frac{D_0 \cdot (1 + g_n)}{k_s - g_n} + \frac{D_0 \cdot H \cdot (g_s - g_n)}{k_s - g_n} \qquad H = \frac{T}{2}$	k – weighted average cost of capital
Common	$FCFF_0 \cdot (1+a)$	N_s – number of the common shares
shares (free	$VP_0 = \frac{FCFF_0 \cdot (1+g)}{k-g}$	FCFEps ₀ – free cash flow to the equity (per share)
cash flow)	Value of common equity VP. – Lighilities.	
	$P_0 = \frac{Value \ of \ common \ equity0}{N_s} = \frac{VP_0 - Liabilities_0}{N_s}$	
	$P_0 = \frac{FCFEps_0 \cdot (1+g)}{k_c - g}$	
	$k_s - g$	
Market	$P/E = \frac{PPS}{EPS}$ $P/D = \frac{PPS}{DPS}$	P/E – price-earnings ratio
multipliers	$PS = EPS \qquad PS$	P/D – price-dividends ratio
	$P/S = \frac{PPS}{SPS}$ $P/B = \frac{PPS}{BPS}$	P/S – price-sales ratio
	515 215	P/B – price to book value of equity ratio
	$EPS = \frac{Net \ income}{N_S} \qquad DPS = \frac{Dividends}{N_S}$	PPS – market price of share
		EPS – earnings per share
	$SPS = \frac{Sales}{N_s}$ $BPS = \frac{Book\ value\ of\ equity}{N_s}$	DPS – dividends per share
		SPS – sales (revenue) per share
	$N_s = number \ of \ issued \ shares$	BPS – book value of equity per share
	– number of treasury shares	N_s – number of outstanding shares
	$PPS_j = (P/E)_s \cdot EPS_j \qquad PPS_j = (P/D)_s \cdot DPS_j$	PPS _j –price of j company
	$PPS_j = (P/S)_s \cdot SPS_j \qquad PPS_j = (P/B)_s \cdot BPS_j$	$(P/X)_s$ – standard price to selected variable ratio
	-, (1-/3) (-1-/3)	

CAPM	$k_{S_i} = k_F + \beta_i \cdot (k_M - k_F)$	ks – required rate of return
	$_{o}$ _ Cov_{iM}	k_F – nominal risk-free interest rate
	$\beta_i = \frac{Cov_{iM}}{\sigma_M^2}$	β – systematic risk
	$\sigma_P = \sqrt{eta_P^2 \sigma_M^2 + \sigma_{arepsilon_P}^2} pprox eta_P \sigma_M$	k _M −return of market index
	$\sigma_P = \sqrt{eta_P^2 \sigma_M^2 + \sigma_{arepsilon_P}^2} pprox eta_P \sigma_M$	Cov _{IM} – covariance between a specific security's return and market portfolio return
		σ _M – standard deviation of a market portfolio return
		σ_{P} – standard deviation of a well diversified portfolio's return
		$\sigma_{\epsilon P}$ – standard deviation of a residual (specific risk) of a well diversified portfolio
Margin		i.m.% – initial margin requirement (%)
account (long		a.m.% – actual margin in investors account (%)
position)	$i.m.\% = \frac{Purchase\ amount - Loan}{Purchase\ amount} = = \frac{Initial\ margin}{Purchase\ amount}$	c.m.% – maintainance margin (%)
	$a.m.\% = \frac{Actual\ market\ value\ of\ a\ portolio-Loan}{Actual\ market\ value\ of\ a\ portolio}$	r.m.% – investor's return on investment (short sale) over the margin account (%)
	Actual market value of a portolio	P _t – share price in period t
	Minimum market value of a portolio — Loan	D _t – dividends per share
	$c.m.\% = rac{ ext{Minimum market value of a portolio} - Loan}{ ext{Minimum market value of a portolio}} =$	k _d - interest rate on margin loan / deposit (%)
	$= \frac{\textit{Maintainance margin}}{\textit{Maintainance margin} + \textit{Loan}}$	
	$r.m.\% = \frac{P_{t+1} - P_t + D_t - k_d \cdot (1 - i.m.\%) \cdot P_t}{i.m.\% \cdot P_t}$	
Margin	Initial margin	
account (short	$i.m.\% = \frac{Initial\ margin}{Short\ sale\ value}$	
sale)	In. margin + Short sale value — Market value of securities	
	$a.m.\% = \frac{of securities}{Market value of securities}$	
	In. margin + Short sale value – Max. market	
	$c.m.\% = \frac{value \ of \ securities}{Max.market \ value \ of \ securities}$	
	Max. market value by securities	
	$r.m.\% = \frac{P_t - P_{t+1} - D_t + k_d \cdot i.m.\% \cdot P_t}{i.m.\% \cdot P_t}$	
Income,	$Y_0 = C_0 + S_0 + I_0$	Y_t – income in period t
savings,	$k_S = k_F + k_R$	C_t – consuming in period t
investment and		S _t – savings in period t
consumption	$C_0 = Y_0 + \frac{S_1}{1 + k_E}$	I_t – investment in period t
•	$C_1 = Y_1 + S_0(1 + k_F)$	k _F – risk-free interest rate
	$maxC_0 = Y_0 - I_0 + \frac{Y_1}{1 + k_F} + \frac{I_1}{1 + k_S}$	k _S – risk adjusted discount rate
	1 1 10 1 105	1